Ru-Catalyzed Cyclocarbonylation of α and β -Allenic Sulfonamides: Synthesis of γ - and δ -Unsaturated Lactams

Suk-Ku Kang,*,† Kwang-Jin Kim,† Chan-Mo Yu,† Jeong-Wook Hwang,‡ and Young-Kyu Do‡

Department of Chemistry and BK-21 School of Molecular Science, Sungkyunkwan University, Suwon 440-746, Korea, and Department of Chemistry, and BK-21 School of Molecular Science, Korea Advanced Institute of Science and Technology, Taejon 305-701, Korea

skkang@chem.skku.ac.kr.

Received June 15, 2001

ABSTRACT

The Ru-catalyzed cyclocarbonylation of α - or β -allenic sulfonamides in the presence of Ru₃(CO)₁₂ (1 mol %) and Et₃N (1.5 equiv) under CO atmosphere (20 atm) in dioxane at 100 °C for 9 h gave heterocyclic γ - and δ -unsaturated lactams in good yields.

The palladium-catalyzed coupling reaction of allenesubstituted alcohols and amine has received much attention in recent years.¹ The palladium-catalyzed carbonylative cyclization of various allenic alcohols and sulfonamides has been known^{2,3} to be an efficient entry to heterocyclic ring systems. Recently Takahashi et al.⁴ used a ruthenium catalyst

of experiments were performed; the results are shown in Table 1. For the cyclization reaction of **1a**, the catalysts tested were $Ru_3(CO)_{12}$, $[RuCl_2(CO)_3]_2$, $RuCl(PPh_3)_3$, and $Ru(CO)-H_2(PPh_3)_3$. Both $Ru_3(CO)_{12}$ and $[RuCl_2(CO)_3]_2$ were equally effective for the cyclization reaction of **1a**. The use of Ru_3 -

in carbonylative coupling and reported that a successful

cyclocarbonylation of allenic alcohols to form γ - and

ORGANIC LETTERS

2001 Vol. 3, No. 18

2851 - 2853

[†] Sungkyunkwan University.

[‡] Korea Advanced Institute of Science and Technology.

⁽¹⁾ Review: Zimmer, R.; Dinesh, C. U.; Nandanan, E.; Khan, F. A. Chem. Rev. 2000, 100, 3257–3282.

^{(2) (}a) Okuro, K.; Alper, H. J. Org. Chem. **1997**, 62, 1566–1567. (b) Walkup, R. D.; Guan, L.; Kim, Y. S.; Kim, S. W. Tetrahedron Lett. **1995**, 36, 3805–3806.

⁽³⁾ The palladium-catalyzed methoxycarbonylation of allene-substituted amines to form pyrrolidine or piperidine carboxylic esters was known by Gallagher et al. See: (a) Gallagher, T.; Davies, I. W.; Jones, S. W.; Lathbury, D.; Mahon, M. F.; Molloy, K. C.; Shaw, R. W.; Vernon, P. J. Chem. Soc., Perkin Trans. 1 1992, 433–440. (b) Fox, D. N. A.; Gallagher, T. Tetrahedron 1990, 46, 4697–4710. (c) Fox, D. N. A.; Gallagher, T. Tetrahedron 1990, 46, 4697–4710. (c) Fox, D. N. A.; Lathbury, D.; Mahon, M. F.; Molloy, K. C.; Gallagher, T. J. Am. Chem. Soc. 1991, 113, 2652–2656. (d) Lathbury, D.; Vernon, P.; Gallagher, T. Tetrahedron Lett. 1986, 27, 6009–6012. (e) Walkup, R. D.; Guan, L.; Park, G. Tetrahedron Lett. 1987, 28, 1023–1026. (f) Kimura, M.; Saeki, N.; Uchida, S.; Harayama, A.; Tanaka, S.; Fugani, K.; Tamaru, U. Tetrahedron Lett. 1993, 34, 7611–7614.

⁽⁴⁾ Yoneda, E.; Kaneko, T.; Zhang, S.-W.; Onitsuka, K.; Takahashi, S. Org. Lett. 2000, 2, 441–443.

⁽⁵⁾ Morimoto, T.; Chatani, N.; Murai, S. J. Am. Chem. Soc. **1999**, *121*, 1758–1759.

⁽⁶⁾ Kang, S.-K.; Kim, K.-J. Org. Lett. 2001, 3, 511-514.

Table 1. Ru-Catalyzed Cyclocarbonylation of α -Allenic Sulfonamide 1a

NHTs Conditions Ru Cat. TsN								
		1a		2 a				
entry	catalysts (mol %)	base (equiv)	solvent	CO pressure (atm)	isolated yield (%)			
1	Ru ₃ (CO) ₁₂ (1)	Et ₃ N (1.5)	dioxane	10	42			
2	$Ru_3(CO)_{12}$ (3)	Et ₃ N (3.0)	dioxane	10	58			
3	$Ru_3(CO)_{12}$ (5)	Et ₃ N (3.0)	dioxane	15	82			
4	$Ru_3(CO)_{12}$ (5)	Et ₃ N (3.0)	THF	20	45			
5	Ru ₃ (CO) ₁₂ (5)	Et ₃ N (1.5)	CH ₃ CN	20	53			
6	$Ru_3(CO)_{12}$ (5)	K ₂ CO ₃ (3.0)	DMF	20	0			
7	$Ru_3(CO)_{12}$ (5)	Et ₃ N (3.0)	DMF	20	43			
8	$Ru_3(CO)_{12}$ (1)	Et ₃ N (1.5)	dioxane	20	85			
9	[RuCl ₂ (CO) ₃] ₂ (1)	Et ₃ N (1.5)	dioxane	20	85			
10	RuCl ₂ (PPh ₃) ₃ (1)	Et ₃ N (1.5)	dioxane	20	61			
11	Ru(CO)H ₂ (PPh ₃) ₃ (1)	Et ₃ N (1.5)	dioxane	20	0			

 $(CO)_{12}$ or $[RuCl_2(CO)_3]_2$, Et₃N as a base, and dioxane as solvent under 20 atm pressure of carbon monoxide afforded γ -unsaturated lactam **2a** in 85% yield. (entries 8 and 9 in

 Table 2.
 Ru₃(CO)₁₂-Catalyzed Cyclocarbonylation of Allenic

 Sulfonamide Derivatives

entry	substrate	time (h)	product	isolated yield (%)
l	NHTs 1a	9	TsN- 2a	85
2	NHTs 1b	9	TsN- 2b O	91
3	NHMts Ic	9	MtsN- 2c O	68
4	NHBn Id	9	BnN- 2d O	54
5	NHTs le	16	TsN- 2e O	70
6	NHTs If	16	TsN- 2f	80
7		12		95
8		14	S TSN O	76
9	TSNH li	9	N N N N N N N N N N N N N N N N N N N	81
10	TsNH 1j	9		80
			2j	

Table 1).⁷ Nevertheless, we chose $Ru_3(CO)_{12}$ as the catalyst for further studies.

The results of Ru-catalyzed cyclocarbonylation of α -allenic sulfonamide derivatives **1** are summarized in Table 2. The α -allenic sulfonamide **1a** reacted in the presence of Ru₃-(CO)₁₂ (1 mol %) in dioxane at 100 °C under CO (20 atm) for 9 h to produce the cyclized unsaturated γ -lactam **2a** in 85% yield (entry 1 in Table 2). Under the same conditions the α -allenic 2,4,6-trimethylbenzenesulfonamide **1c** was smoothly cyclized to **2c** in 68% yield (entry 3). For the α -allenic benzylamine **1d** the reaction proceeded to provide **2d** in 54% yield (entry 4). Treatment of cyclohexylsubstituted α -allenic sulfonamide **1e** under the same conditions gave the lactam **2e** in 70% yield (entry 5). With phenyl-, 2-furyl-, and 2-thienyl-substituted sulfonamides **1f**, **1g**, and **1h** as substrates, the γ -lactams **2f**, **2g**, and **2h** were obtained in 80%, 95%, and 76% yields, respectively (entries 6–8).

For the compound **2f**, the structure was unambiguously confirmed by X-ray crystallography (Figure 1). This protocol was extended to β -allenic sulfonamide **1i**. The reaction of **1i** with Ru₃(CO)₁₂ catalyst in the same reaction conditions

Figure 1. ORTEP drawing of 2f.

afforded the unsaturated δ -lactam **2i** in 81% yield (entry 9). Alternatively, for α -methyl-substituted β -allenic sulfonamides **1j** the cyclocarbonylation under Ru-catalysis afforded α -methyl-substituted δ -lactam **2j** in 80% yield (entry 10).

To confirm the proposed mechanism we have conducted studies on the carbocyclization of the deuterium-substituted α -allenic sulfonamide **3** by means of 500 MHz ¹H NMR spectrometry and high resolution mass spectrometry. It was found that the deuterium was totally transferred to the product lactam **4**⁸ (Scheme 1).

For the formation of lactams **2** by the Ru-catalyzed cyclocarbonylation, the plausible mechanism is shown in Scheme 2. It is presumed that oxidative insertion of Ru- $(CO)_4$ to the N-H bond of the NHTs group in compound **1**

(8) Spectral and physical data of **3** and **4**. **3**: ¹H NMR (500 MHz, CDCl₃) δ 0.85 (t, 3H, J = 7.63 Hz), 1.20 (m, 8H), 1.50 (m, 2H), 2.42 (s, 3H), 3.80 (m, 1H), 4.63 (m, 1H), 4.72 (m, 1H), 4.96 (m, 1H), 7.30 (d, 2H, J = 8.21 Hz); T7.75 (d, 2H, J = 8.21 Hz); HRMS calcd for C₁₇H₂₄DNO₂S 308.1668, found 308.1646. **4**: ¹H NMR (500 MHz, CDCl₃) δ 0.87 (t, 3H, J = 7.63 Hz), 1.06 (m, 1H), 1.12 (m, 1H), 1.22 (m, 6H), 1.81 (t, 2H, J = 1.76 Hz), 1.82 (m, 1H), 2.13 (m, 1H), 2.43 (s, 3H), 4.73 (m, 1H), 6.81 (t, 1H, J = 1.76 Hz), 7.32 (d, 2H, J = 8.21 Hz), 7.97 (d, 2H, J = 8.21 Hz); HRMS calcd for C₁₈H₂₄DNO₃S 336.1617, found 336.1616.

followed by syn-addition of the Ru–H bond to the terminal allene produces the intermediate **A**. Carbonyl insertion to the N–Ru bond gives the intermediate **B**, which reacts with CO to provide the product lactam with liberation of $Ru(CO)_4$ (Scheme 2).

In conclusion, the Ru-catalyzed cyclocarbonylation of allenic sulfonamides under CO (20 atm) to form γ - or δ -lactams was accomplished successfully.

Acknowledgment. This work is supported by a National Research Laboratory Grant by the Korea Ministry of Science and Technology and KOSEF-CMDS (Center for Molecular Design and Synthesis).

Supporting Information Available: Typical experimental procedures and characterization for 2a-i and 2j. This material is available free of charge via the Internet at http://pubs.acs.org.

OL016281C

⁽⁷⁾ **Typical Procedure.** A stainless autoclave was charged with allenic sulfonamide **1a** (70 mg, 0.25 mmol), 1.4-dioxane (3 mL), triethylamine (38 mg, 0.38 mmol), and Ru₃(CO)₁₂ (1.6 mg, 1 mol %), and the system was flushed with 20 atm of CO three times. It was then pressurized to 20 atm, and the reaction mixture was stirred at 100 °C for 9 h. The mixture was cooled and then evaporated in vacuo. The crude product was separated by SiO₂ column chromatography (hexanes/EtOAc, 1:5) to give the product **2a** (63 mg, 85%). **2a**: colorless oil; IR (neat) 3056, 2987, 1724, 1424, 1359, 1266, 1171 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 0.85 (t, 3H, *J* = 7.63 Hz), 1.09 (m, 2H), 1.28 (m. 2H), 1.81 (t, 3H, *J* = 1.76 Hz), 1.83 (m, 1H), 2.14 (m, 1H), 2.43 (s, 3H), 4.73 (m, 1H), 6.82 (t, 1H, *J* = 1.76 Hz), 7.32 (d, 2H, *J* = 8.21 Hz), 7.97 (d, 2H, *J* = 8.21 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 170.6, 145.5, 145.5, 136.8, 134.3, 130.2, 128.7, 63.0, 32.7, 26.6, 23.2, 22.4, 14.6, 11.4; HRMS calcd for C₁₆H₂₁NO₃S 307.1242, found 307.1236.